A human-assisting manipulator teleoperated by EMG signals and arm motions

نویسندگان

  • Osamu Fukuda
  • Toshio Tsuji
  • Makoto Kaneko
  • Akira Otsuka
چکیده

This paper proposes a human-assisting manipulator teleoperated by electromyographic (EMG) signals and arm motions. The proposed method can realize a new master–slave manipulator system that uses no mechanical master controller. A person whose forearm has been amputated can use this manipulator as a personal assistant for desktop work. The control system consists of a hand and wrist control part and an arm control part. The hand and wrist control part selects an active joint in the manipulator’s end-effector and controls it based on EMG pattern discrimination. The arm control part measures the position of the operator’s wrist joint or the amputated part using a three-dimensional position sensor, and the joint angles of the manipulator’s arm, except for the end-effector part, are controlled according to this position, which, in turn, corresponds to the position of the manipulator’s joint. These control parts enable the operator to control the manipulator intuitively. The distinctive feature of our system is to use a novel statistical neural network for EMG pattern discrimination. The system can adapt itself to changes of the EMG patterns according to the differences among individuals, different locations of the electrodes, and time variation caused by fatigue or sweat. Our experiments have shown that the developed system could learn and estimate the operator’s intended motions with a high degree of accuracy using the EMG signals, and that the manipulator could be controlled smoothly. We also confirmed that our system could assist the amputee in performing desktop work.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial Human Arm Driven by EMG Signal

Robot arms are versatile tools found in a wide range of applications. While the user moves his arm, (EMG) activity is recorded from selected muscles, using surface EMG electrodes. By a decoding procedure the muscular activity is transformed to kinematic variables that are used to control the robot arm. EMG signals have been used as control signals for robotics devices in the past. EMG signals, ...

متن کامل

Prediction of Above-elbow Motions in Amputees, based on Electromyographic(EMG) Signals, Using Nonlinear Autoregressive Exogenous (NARX) Model

Introduction In order to improve the quality of life of amputees, biomechatronic researchers and biomedical engineers have been trying to use a combination of various techniques to provide suitable rehabilitation systems. Diverse biomedical signals, acquired from a specialized organ or cell system, e.g., the nervous system, are the driving force for the whole system. Electromyography(EMG), as a...

متن کامل

The Impedance and Position Control of the Robot Manipulator by the Emg Signal

− The present paper proposes a human interface regulating the viscoelastic characteristics of the robot manipulator by the EMG signals picked up from the subject. The desired trajectory intended by the subject is generated through the bilinear internal arm model with the EMG input signals, and then the viscoelastic coefficients of robot manipulator are regulated corresponding to the sum of the ...

متن کامل

EMG-Based Control of a Multi-Joint Robot for Operating a Glovebox

This chapter describes a control method for a multi-joint robotic manipulator using Electromyogram (EMG) signals for operating a glovebox. The system uses a Probabilistic Neural Network (PNN) to estimate the user’s intended motion from EMG patterns, and generates a control command for the glovebox and robotic manipulator corresponding to the estimated motions. The user can therefore control the...

متن کامل

Finger Motion Decoding Using EMG Signals Corresponding Various Arm Postures

We provide a novel method to infer finger flexing motions using a four-channel surface electromyogram (EMG). Surface EMG signals can be recorded from the human body non-invasively and easily. Surface EMG signals in this study were obtained from four channel electrodes placed around the forearm. The motions consist of the flexion of five single fingers (thumb, index finger, middle finger, ring f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Robotics and Automation

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2003